
International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         1 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

     
  A Novel Approaches on Clustering Algorithms    
                    And it’s Applications 

B.Venkateshwar Reddy, T. Asha Latha 

 

Abstract— Graph clustering algorithms are Random walk and minimum spanning tree algorithms. Random walk has been used to identify significant 

vertices in the graph that receive maximum flow while minimum spanning tree algorithm has been used to identify significant edges in the graph .We 

believe these two graph algorithms have useful applications in clustering, namely for identifying centroids and for identifying edges to merge or split 

clusters such that intra-cluster similarity is maximized while inter-cluster similarity is minimized. This paper investigates the graph algorithms, graph-

based clustering algorithms, and their applications. graph algorithms and graph-based clustering algorithms, we propose novel variants of Star clustering 

algorithm that use different techniques for identifying centroids, and two novel graph-based clustering algorithms: MST-Sim and Ricochet. The variant 

graph algorithms and graph based clustering algorithms achieve higher performance in terms of effectiveness and efficiency for the applications of 

document clustering, k-member clustering, opinion mining, clustering for part-of-speech tagging. 

 

Keywords— Clustering algorithms, graph based clustering algorithms, 

                                                          ——————————      —————————— 
 
 

1.INTRODUCTION 

 
A graph is a finite set of nodes with edges between nodes 
Formally, a graph G is a structure (V,E) consisting of a finite 
set V called the set of nodes, and set E that is a subset of VxV. 
that is, E is a set of pairs of the form (x, y) where x and y are 
nodes in V. Given an undirected, connected graph G(V,E) with 
|V| = n, |E| = m a random ‚step‛ in G is a move from some 
node u to a randomly selected neighbor v. A random walk is a 
sequence of these random steps starting from some initial 
node. Given a connected, weighted, bi-directed graph G = (V, 
E), a spanning tree of G is a subgraph which is a tree that 
connects all the vertices in G. The weight of a spanning tree is 
the sum of the weights of edges in that spanning tree. A 
minimum spanning tree (MST) of G is a spanning tree whose 
weight is less than or equal to weight of every other spanning 
tree of G. More generally, any weighted, bi-directed graph 
(not necessarily connected) has a minimum spanning forest, 
which is a union of MSTs of its connected components. Well 
known algorithms for finding MST are Kruskal’s algorithm *1+, 
Borůvka’s algorithm *2+, and Prim’s algorithm *3], which are 
all greedy algorithms. Faster randomized MST algorithm has 
been developed in [4].  

2. CLUSTERING ALGORITHMS 

Several algorithms have been proposed for clustering. They 
can be grouped into the following categories: partitioning 
algorithms, hierarchical algorithms, and graph-based 
algorithms. 
 
2.1 Partitioning Clustering Algorithm 
 

K-means clustering algorithm [5] divides the set of vertices 
of a graph into K clusters by first choosing randomly K seeds 
or candidate cetroids. It then assigns each vertex to the cluster 
whose centroid is the closest. K-means iteratively re-computes 
the position of the exact centroid based on the current 
members of each cluster, and reassigns vertices to the cluster 
with the closest centroid until a halting criterion is met (e.g. 
centroids no longer move). The number of clusters K is 
defined by user a priori and does not change. 
 
2.2 Hierarchical Clustering Algorithms 

    Hierarchical algorithms [6] can be categorized into 
agglomerative and divisive ones. Agglomerative algorithms 
treat each vertex as a separate cluster, and iteratively merge 
clusters that have the greatest similarity from each other until 
all the clusters are grouped into one. The objective function of 
hierarchical clustering is intra-cluster similarity; i.e. greatest 
similarity at each merger. Divisive algorithms start with all 
vertices in one cluster, and subdivide it into smaller clusters. 

 
3. GRAPH-BASED CLUSTERING ALGORITHMS 
 

Graph-based algorithms for clustering create clusters by 
cutting or removing edges that are deemed unimportant 
according to some measurement. We have seen several graph-
based clustering algorithms which include Minimum 
Spanning Tree (MST) clustering, Chameleon, Markov 
clustering, and Star clustering. 

———————————————— 

 Mr.B.Venkateshwar Reddy is working as Asst.Professor in 

Department of Computer Science & Engineering, Anurag Group of 

Institutions, Hyderabad, India. E-mail: stragreddi@gmail.com. 

 Mrs. Asha Latha is working as Asst.Professor in Department of 

Computer Science & Engineering, Anurag Group of Institutions, 

Hyderabad, India. E-mail: asha.thandu@gmail..com 
 

mailto:stragreddi@gmail.com
mailto:asha.thandu@gmail..com


International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         2 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

 
3.1 MST Clustering 
  

     Zahn’s MST clustering algorithm [7] is a well known 
graph-based algorithm for clustering [8]. The implementation 
of Zahn’s algorithm starts by finding a minimum spanning 
tree in the graph and then removes inconsistent edges from 
the MST to create clusters [9]. Inconsistent edges are defined 
as edges whose distances are significantly larger (e.g. c times 
larger) than the average distance of the nearby edges in the 
MST; where c is a measure of significance and is a userdefined 
constant. The objective function of Zahn’s algorithm is inter-
cluster sparsity; i.e. maximum distances in-between clusters. 
Zahn’s algorithm requires constructing the complete MST to 
determine inconsistent edges. 
 
3.2 Chameleon 
 

       Chameleon [10] is a graph-based clustering algorithm 
that stems from the need for dynamic decisions in place of 
static parameters. Chameleon first constructs a sparse graph of 
K-nearest neighbour as an initial threshold. It then uses a min-
cut based algorithm to partition this graph. Finally, it 
iteratively and dynamically merges the sub graphs 
considering their measures of relative inter-similarity and 
closeness based respectively, on the sum and average weight 
of edges in the min-cut of and in-between the clusters. The 
objective function of Chameleon is intercluster sparsity (by 
using min-cut to partition the graph) and intra-cluster 
similarity (by using relative inter-similarity and closeness to 
merge subgraphs). Like hierarchical clustering, Chameleon 
produces a dendrogram of possible clusters at different levels 
of granularity. In effect, Chameleon uses three parameters: the 
number of nearest neighbors, the minimum size of the sub 
graphs, and the relative weightage of inter-similarity and 
closeness 
 
3.3 Markov Clustering 
 

      Markov Clustering (MCL) algorithm is a form of graph-
based clustering algorithm that is based on simulation of 
stochastic flow (or random walks) in graphs [11]. The aim of 
MCL is to separate the graph into regions with many edges 
inside and with only a few edges between regions. Once 
inside such a region, the flow (or a random walker) has little 
chance to flow out [12]. To do this, the graph is first 
represented as stochastic (Markov) matrices where edges 
between vertices indicate the amount of flow between the 
vertices: i.e. similarity measures or the chance of walking from 
one vertex to another in the graph. MCL algorithm simulates 
flow using two alternating simple algebraic operations on the 
matrices: expansion, which coincides with normal matrix 
multiplication, and inflation, which is a Hadamard power 
followed by a diagonal scaling.The expansion process causes 
flow to spread out and the inflation process represents the 
contraction of flow: it becoming thicker in regions of higher 
current and thinner in regions of lower current. The flow is 
eventually separated into different regions, yielding a cluster 

interpretation of the initial graph. Like Chameleon, the 
objective function of MCL is intra-cluster similarity and inter-
cluster sparsity. However, MCL is computationally expensive 
as it involves expensive matrix operations. 

 
3.4 Star Clustering 
 

Star clustering is another graph-based algorithm. The 
algorithm, first proposed by Aslam et al. In 1998 [13], replaces 
the NP-complete computation of a vertex-cover by cliques by 
the greedy, simple and inexpensive computation of star 
shaped dense sub graphs. Star clustering starts by removing 
edges whose weight is heavier than certain threshold. It then 
assigns each vertex to its adjacent star center, which is a vertex 
with equal or higher degree. Each star center and its adjacent 
vertices is a cluster. The objective function of Star is both intra-
cluster similarity (by selecting star centers with high degree to 
potentially maximize intra-cluster similarity) and inter-cluster 
sparsity (by removing edges whose weights are above certain 
threshold). 

 
    
4. PROPOSED METHODS FOR GRAPH BASED                
CLUSTERING ALGORITHMS 
 

In this research, we study existing graph-based clustering 
algorithms and evaluate their choice of similarity metrics, 
empirically and theoretically using the basis of graph theory; 
and using different measure of threshold when applicable. We 
have performed a study on Star clustering and MST 
clustering. Combining the ideas from Star clustering, MST, 
and K-means, we propose a novel family of graph-based 
clustering algorithms called Ricochet that does not require any 
Parameters to be defined a priori. 
 
4.1 Graph Algorithms 
 
4.1.1 A Variant of Randomized MST Algorithm 
 

Here we present our proposed variant of randomized MST 
algorithm. The randomized MST algorithm several drawbacks 
of the algorithm. Firstly, the decision on how many Borůvka’s 
steps applied at each recursive call of the algorithm is not clear.  
Applies 2 Borůvka’s steps at each recursive call of the 
algorithm while [14] applies 4 Borůvka’s steps at each 
recursive call of the algorithm. If there are too many Borůvka’s 
steps, the randomized MST algorithm is no different than 
Borůvka’s algorithm; too few and the randomized algorithm 
will not be able to run in linear time. It is not clear what the 
best number is for the application of Borůvka’s steps in the 
algorithm.Secondly, given a graph G and a random subgraph 
G1 obtained from G, the algorithm recursively finds the MST 
T of G1 and use T to identify T-heavy and T-light edges in G. 
Based on the cycle property however; any random tree T in 
the graph (not necessarily MST) can be used to identify T-
heavy edges. The choice of the tree is irrelevant to the result, i.e. 
the MST of G. By recursively finding the MST of G1, the 
algorithm may incur additional cost when they could have 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         3 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

selected and used any tree in G. Given any tree T in the graph, 
the linear time MST verification algorithm [15] can be used to 
identify T-heavy edges in the graph. Given a tree T from G, the 
verification algorithm [15] first builds a Borůvka tree B by 
applying Borůvka algorithm on T. Since T is a tree with N-1 
edges, B can be constructed in O (N) time where N is the 
number of vertices in G. The property of Borůvka tree B 
necessitates that the weight of the heaviest edge in the path 
between two vertices x and y in T equals the weight of the 
heaviest edge in the path between x and y in B, which can be 
found in unit time once B is constructed [15]. An edge (x, y) 
with weight c (x, y) in G is T-heavy (and therefore is not in the 
MST of G) if the heaviest edge in the path between x and y in 
B is lighter than c (x, y). We abandon the idea of Borůvka steps 
application and the recursive discovery of MST in random sub 
graphs to propose a variant of randomized MST algorithm. 
Our proposed algorithm does not need to decide how many 
Borůvka steps to apply and it fully utilizes the cycle and cut 
property of graphs. The algorithm is detailed in figure 1. The 
complexity of the algorithm is at most O (MN) because it 
needs to iterate through at most M edges in G. Each iteration 
may cost a re-construction of the Borůvka tree when an edge is 
added or removed from the tree. A construction of the 
Borůvka tree costs at most O (N) since there are only N-1 
edges in the tree [15]. Hence the complexity of the algorithm is 
at most O (MN). The complexity of our algorithm depends on 
its selection of the initial random subgraph T. The algorithm 
can run faster if it selects a good T from G, i.e. T which is close 
to the MST of G. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 1:   A variant of randomized MST Algorithm 
 

 
In this research, we study existing graph-based clustering 

algorithms and evaluate their choice of similarity metrics, 
empirically and theoretically using the basis of graph theory; 
and using different measure of threshold when applicable. We 
have performed a study on Star clustering and MST clustering. 
Combining the ideas from Star clustering, MST, and K-means, 
we propose a novel family of graph-based clustering 
algorithms called Ricochet that does not require any 
parameters to be defined a priori. 
 
4.1.2 Star Clustering  
 

To produce reliable document clusters of similarity σ (i.e. 
clusters where documents have pairwise similarities of at least 
σ, where σ is a user-defined threshold), the Star algorithm 
starts by representing the document collection by its σ-
similarity graph. A σ-similarity graph is an undirected, 
weighted graph where vertices correspond to documents and 
there is an edge from vertex vi to vertex vj if their cosine 
similarity in a vector space is greater than or equal to σ. Star 
clustering formalizes clustering by performing a minimum 
clique cover with maximal cliques on this σ-similarity graph 
(where the cover is a vertex cover). Since covering by cliques is 
an NPcomplete problem, Star clustering approximates a clique 
cover greedily by dense sub-graphs that are star shaped. A 
star shaped sub-graph of m + 1 vertices consisting of a single 
Star center and m satellite vertices, where there exist edges 
between the Star center and each satellite vertex. Star 
clustering guarantees pair-wise similarity of at least σ between 
the Star and each of the satellite vertices. However, it does not 
guarantee such similarity between satellite vertices. By 
investigating the geometry of the vector space model, Aslam 
et al. derive a lower bound on the similarity between satellite 
vertices and predict that the pair-wise similarity between 
satellite vertices in a Starshaped sub-graph is high. In their 
derivation of expected similarity between satellite vertices in a 
Star cluster [16], Aslam et al. show that the lower bound of 
similarity cos (γi,j) between two satellite vertices vi and vj in a 
Star cluster is such that: 

 
cos (γi,j) ≥ cos (αi) cos(αj)+ (σ / σ + 1) sin(αi) sin(αj)  
 

where cos (αi) is the similarity between the Star center v and 
satellite vi and cos (αj) is the similarity between the Star center 
v and satellite vj. They also show empirically that the right 
hand side of inequality above is a good estimate of its left 
hand side. 
 
4.1.3 MST-Sim Clustering 
 

In this research, we propose a novel MST-based graph-
based clustering algorithm, called MSTSim, that draws 
inspiration from Kruskal’s algorithm and Borůvka’s algorithm 
for finding minimum spanning tree (MST) in the graph. There 
are several well known algorithms for finding MST in a 
weighted graph. Kruskal’s algorithm sorts edges in ascending 
order of their weight. Edges and the vertices they connect are 

Algorithm: A variant of randomized MST Algorithm 

1. Obtain a subgraph T of G by randomly including     
     N-1 edges from G 
2. Construct a Borůvka tree B from T 
3. Identify edges in T that are not selected to  
    construct B, delete these edges from G and T 
4. Using a linear-time verification algorithm, identify  
    T-heavy edges in G and delete them from G 
    and T, i.e. for each edge e = (x, y) in G: 
       a. If e is T-heavy, delete it from G and T 
       b. If e is T-light: 
           i. identify the heaviest edge e’ in the path   
              between x and y in B that makes e Tlight 
              and remove e’ from G and T 
          ii. add e to T 
          iii. reconstruct the Borůvka tree B from T 
          iv. delete edges that are not selected to     
               construct B from G and T 
      c. If e connects disconnected component in T: 
          i. add e to T 
          ii. reconstruct the Borůvka tree B from T 
          iii. delete edges that are not selected to construct    
                B from G and T 
5. Return remaining edges in G 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         4 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

added to the minimum spanning tree in this order. The 
algorithm terminates when all vertices have been connected 
into a single component. Borůvka’s algorithm scans the set of 
vertices and connects each vertex to the vertex or sub-tree with 
the lightest edge. This step is iterated for sub-trees until all 
vertices are connected into a single component. Prim’s 
algorithm starts with an arbitrary vertex and repeatedly 
connects a new adjacent vertex with the lightest edge. 
Reverse-delete algorithm [17] deletes edges from the original 
graph in a descending order of their weight and that do not 
disconnect the graph until the result is a tree. 

 
Our proposed family of MST-Sim clustering algorithms is 

different in several aspects from the existing MST clustering 
algorithms. Firstly, our algorithms do not require any input 
information such as desired number of clusters or threshold to 
be provided before clustering. At most they use an inflation 
parameter that gives a fine tuning capability for effectiveness. 
Secondly, our algorithms find clusters while they are 
constructing the MST rather than a posteriori. Thirdly, our 
simple algorithms consider both inter-cluster sparsity – edges 
in-between clusters and intracluster density – edges within 
clusters when constructing clusters.  
 
4.2 Ricochet: a Family of Unconstrained Graph-based clustering  

 
Unlike Star clustering algorithm that is parameterized by 

the edge threshold and MST clustering that is parameterized 
by the inflation parameter, Ricochet is unconstrained. Ricochet 
algorithms alternate two phases: the choosing of vertices to be 
the centroids of clusters and the assignment of vertices to 
existing clusters. The motivation underlying our work is that: 
(1) Star clustering algorithm provides a metric of selecting Star 
centers that are potentially good cluster centroids for 
maximizing intra-cluster similarity, (2) K-means provides an 
excellent vertices assignment and reassignment, and a 
convergence criterion that increases intra-cluster similarity at 
each iteration, (3) minimum spanning tree algorithm provides 
a means to select edges to merge clusters that potentially 
maximizes intra-cluster similarity.  

 
The Ricochet family is twofold. In the first Ricochet sub-

family, centroids are chosen one after the other (‘stones are 
thrown one by one’). In the second Ricochet sub-family, 
centroids are chosen at the same time (‘stones are thrown 
together’). We call the former algorithms Sequential Rippling, 
and the latter Concurrent Rippling. The algorithms in the 
Sequential Rippling, because of the way they select centroids 
and assign or re-assign vertices, are intrinsically hard 
clustering algorithms, i.e. they produce disjoint clusters. The 
algorithms in the Concurrent Rippling are soft clustering 
algorithms, i.e. they produce possibly overlapping clusters. 
 
4.2.1 Sequential Rippling (SR) 

 
The first algorithm of the subfamily is call Sequential 

Rippling (or SR). In this algorithm, vertices are ordered in 
descending order of the average weight of their adjacent edges 

(later referred to as the weight of a vertex). The vertex with the 
highest weight is chosen to be the first centroid and a cluster is 
formed by assigning all other vertices to the cluster of this first 
centroid. Subsequently, new centroids are chosen one by one 
from the ordered list of vertices. When a new centroid is 
added, vertices are re-assigned to a new cluster if they are 
closer to the new centroid than they were to the centroid of 
their current cluster (if no vertex is closer to the new centroid, 
no new cluster is created). If clusters are reduced to singletons 
during re-assignment, they are assigned to the nearest non-
singleton cluster. The algorithm stops when all vertices have 
been considered. The pseudocode of the Sequential Rippling 
algorithm is given. The worst case complexity of Sequential 
Rippling algorithm is O(N3) because in the worst case the 
algorithm has to iterate through at most N vertices, each time 
comparing the distance of N vertices to at most N centroids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Figure 2:   Sequential Rippling (SR) 
 
4.2.2 Concurrent Rippling (CR) 
 

The first algorithm of the sub-family is called Concurrent 
Rippling (CR). In this algorithm, for each vertex, the adjacent 
edges are ordered in descending order of weights. Iteratively, 
the next heaviest edge is considered. Two cases are possible: (1) 
if the edge connects a centroid to a noncentroid, the non-
centroid is added to the cluster of the centroid (notice that at 
this point the noncentroid belongs to at least two clusters), (2) 
if the edge connects two centroids, the cluster of one centroid 
is assigned to the cluster of the other centroid (i.e. it is 
‘engulfed’ by the other centroid), if and only if its weight is 
smaller than that of the other centroid.  
 
 
 
 
 
 
 
 
 

Algorithm: SR ( ) 

Sort V in order of vertices’ weights 

Take the heaviest vertex v from V 

listCentroid.add (v) 

Reassign all other vertices to v’s cluster 

While (V is not empty) 

Take the next heaviest vertex v from V 

Reassign vertices which are more similar to v 

than to other centroid 

If there are re-assignments 

listCentroid.add (v) 

Reassign singleton clusters to its 

nearest centroid 

For all i ε listCentroid return i and its associated 

cluster 

 
 

Algorithm: CR ( ) 
1. Sort E in order of the edge weights 
2. CentroidChange = true 
3. index = 0 
4. While (CentroidChange && index < N-1 && E is not 
empty) 
5. CentroidChange = false 
6. For each vertex v, take its edge evw connecting v to its 
next 
closest neighbor w; i.e. w = v.neighbor [index] 
7. Store these edges in S 
8. Find the lowest edge weight in S, say low, and empty S 
9. Take all edges from E whose weight >= low 
10. Store these edges in S 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         5 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

 
 
 
 
 
 
 
 
 
          Figure 3:  Concurrent Rippling (CR) 

 The two clusters are merged and the smaller weight 
centroid becomes a non-centroid. The algorithm terminates 
when the centroids no longer change.  Concurrent Rippling 
algorithm requires O (N2logN) complexity to sort the N-1 
neighbors of the N vertices. It requires another O (N2logN) to 
sort the N2 number of edges. In the worst case, the algorithm 
has to iterate through all the N2 edges. Hence, in the worst 
case the complexity of the algorithm is O (N2logN). 
 
5.  APPLICATIONS 
 
5.1 Document Clustering 
 

We illustrate and evaluate the performance of our graph-
based clustering algorithms for the offline and on-line 
document clustering task. Documents are vertices of the graph 
and edges are weighted with the inverse of the tf-idf cosine-
similarity of the documents they connect. The graph is a 
clique. We evaluate the performance of our proposed 
algorithms empirically against other state of the arts clustering 
algorithms: Markov Clustering, Star Clustering, K-
means,Single-link Hierarchical Clustering, and Zahn’s MST 
Clustering. For Star clustering, by default and unless 
otherwise specified, we set the value of threshold σ for Star 
clustering to be the average similarity of documents in the 
given sub-collection 
 
5.2 k-member Clustering 
 

One of the premises of our work is the opportunity to easily 
adapt our MST-Sim clustering algorithms to related problems 
of local and dynamic nature such as k-member clustering. We 
illustrate and evaluate the performance of our MST-Sim 
algorithm for k-member clustering with the k-member greedy 
clustering algorithm proposed in [18], which has been 
experimentally shown to outperform Median Partitioning and 
K-Nearest Neighbor algorithms for k anonymization in terms 
of information loss. Records as vertices of the graph and edges 
are weighted with distance metric. a variant of MST-Sim that 
can be used to solve k-member clustering problem, called 
MST-k, which uses only one condition for merging, i.e. the 
condition that the size of the resulting merged cluster must be 
lesser than or equal to k. we see that all our algorithms are 
slower than k-member greedy algorithm on all k-values due to 
their pre-processing time to construct the graph and compute 
all pair wise similarities between records. graph-based 
clustering algorithms, the pre-processing time is a bottleneck 
for MSTk.When pre-processing time is not factored in, MST-k 

is much faster than k-member greedy clustering. In average, it 
is 94.4% faster when pre-processing time is not a factor. This 
further highlights the need for ways to reduce the pre-
processing time of graph-based clustering algorithms. 
 
5.3 Opinion-based Ranking 
 

We illustrate and evaluate our method for ranking movies 
based on opinions in their reviews, by using reviews of box 
office movies written by users of a popular movie review site. 
We pick 50 movies randomly from box office list of November 
2007 to February 2008. For each movie, we download all its 
users’ reviews. For each movie we note its box office figure, its 
overall quantitative user rating, and its genre. The movies are 
of genre action, animation, children, comedy, drama, foreign 
film, horror, musical, romance, science fiction, chick flick, 
crime, political, or psycho. We use Top-k and Granularity-g 
method for evaluating performance. For each of the 
evaluation, we present metrics for measuring ranking 
performance. We also present interesting result for the 
ranking of adjectives by genre. 
 
5.4 Time Series Correlation 
 

We illustrate and evaluate the performance of our proposed 
method that computes time series correlation as similarity 
between their corresponding gradient sequences. We use 
correlation measures produced by our method to identify 
pairs of time series with high similarity in their gradient 
sequences. We conduct the evaluation on both synthetic and 
real time series data. 
 
6. CONCLUSION 
 
a variant of randomized MST algorithm that does not use 
Borůvka steps and selects any random tree from the graph to 
identify heavy edges. The algorithm incrementally finds the 
MST of the graph by building on the initial random tree. The 
algorithm is iterative and it is simpler in implementation, 
based purely on the cycle and cut property of graphs. MST-
Sim that uses minimum spanning tree algorithm and adds to it 
intra- and inter cluster similarity metrics, which have basis in 
graph theory. MST-Sim algorithms are generally very fast and 
efficient in comparison with other state of the art graph-based 
clustering algorithms Ricochet that does not require any 
parameter to be defined a priori. While the fact that Ricochet is 
unconstrained is already an advantage, Ricochet algorithms 
are competitive to other state of the art clustering algorithms. 
Among our three proposed families of algorithms – variant of 
Star, MST-Sim, and Ricochet, MST-Sim is the most effective 
and efficient. 

7. ACKNOWLEDGMENT 

The author is very thankful to respected Dr.G.Vishnu 
Murthy, Head of the Department, Computer Science & 
Engineering, School of Engineering, Anurag Group of 
Institutions, Hyderabad, India. And to my parents who have 
always been very understanding and supportive both 



International Journal of Scientific & Engineering Research Volume 3, Issue 7, June-2012                                                                                         6 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

financially and emotionally. 

7. REFERENCES 

[1] Kruskal J. B., On the shortest spanning subtree and the 
traveling salesman problem. In Proceedings of the 
American Mathematical Society. 7, pp. 48–50, 1956. 

[2] Boruvka O., ‚O jistém problému minim{lním (About a 
certain minimal problem)‛, Pr{ce mor. prírodoved. spol. 
v Brne III, pp. 3: 37–58, 1926. 

[3]  Skiena S. S., The Algorithm Design Manual, 
Telos/Springer-Verlag, New York, 1998. 

[4]  Karger D.R., Klein P.N., and Tarjan R.E., A Randomized 
Linear-Time Algorithm to Find Minimum Spanning 
Trees, Journal of the ACM, Vol. 42, pp. 2:321-328, 1995. 

[5] MacQueen J. B., Some Methods for classification and 
Analysis of Multivariate Observations. Proceedings of 
5th Berkeley Symposium on Mathematical Statistics and 
Probability. Berkeley, University of California Press, 
1:281-297, 1967. 

[6] Johnson S. C., Hierarchical Clustering Schemes. 
Psychometrika, 2:241-254, 1967. 

[7] Zahn C.T., Graph Theoretical Methods for Detecting and 
Describing Gestalt Clusters. IEEE Transactions on 
Computers, Vol. C-20, No. 1, January 1971. 

[8] Jain A.K., Murty M. N., Flynn, P.J., Data Clustering: A 
Review, ACM Computing Surveys,Vol. 31, No. 3, 
September 1999. 

[9] Algorithm 479: A Minimal Spanning Tree Clustering 
Method [Z]. Communications of the ACM, Vol. 17, Issue 
6, Pages: 321 – 323, June 1974. 

[10] Karypis G., Han E., Kumar V., CHAMELEON: A 
Hierarchical Clustering Algorithm Using Dynamic 
Modeling. IEEE Computer Vol. 32 No. 8, 68-75, 1999. 

[11] Van Dongen S.M., Graph clustering by flow simulation - 
[S.l.]: [s.n.], 2000 - Tekst. -Proefschrift Universiteit 
Utrecht, 2000. 

[12] Nieland H., Fast Graph Clustering Algorithm by Flow 
Simulation. Research and Development ERCIM News No. 
42 - July 2000. 

[13] Aslam J., Pelekhov K., and Rus D., the Star Clustering 
Algorithm. In Journal of Graph Algorithms and 
Applications, 8(1) 95–129, 2004. 

[14] Motwani R. and Raghavan P., Randomized Algorithms, 
Cambridge University Press, 1995. 

[15]  King V., A Simpler Minimum Spanning Tree 
Verification Algorithm, Workshop on Algorithms and 
Data Structures, 1995. 

[16]  Aslam J., Pelekhov K., and Rus D., The Star Clustering 
Algorithm. In Journal of Graph Algorithms and 
Applications, 8(1) 95–129, 2004. 

[17] Kleinberg J., Tardos E., Algorithm Design, Pearson 
Education Inc., New York, 2006. 

[18]  Byun J., Kamra A., Bertino E., and Li N., Efficient k-
anonymity Using Clustering Techniques, Proceedings of 
International Conference on Database Systems for 
Advanced Applications (DASFAA), 2007. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AUTHORS BIOGRAPHY 
 
 

 Mr.B.Venkateshwar Reddy 
Received M.Sc Mathematics 
from Osmania University and 
M.E Computer Science and 
Engineering from Sathyabama 
University, Chennai. Presently 
working as a Assistant 
Professor in school of 
Engineering, Anurag Group of 
Institutions, Hyderabad, India. 
Published three papers in 
various National and 

International Conferences, Journals. His area of interest 
includes Data Mining, Machine Learning and Pattern 
Recognition. 

 
 
Mrs.T.Asha Latha Received 
B.Tech Computer Science and 
Engineering from JNTUH. 
Pursuing M.Tech Computer 
Science and Engineering from 
JNTUH. Presently working as a 
Assistant Professor in school of 
Engineering, Anurag Group of 
Institutions, Hyderabad, India. 
 
 

 

  


